Spatial and temporal distribution of solute leaching in heterogeneous soils: analysis and application to multisampler lysimeter data.
نویسندگان
چکیده
Accurate assessment of the fate of salts, nutrients, and pollutants in natural, heterogeneous soils requires a proper quantification of both spatial and temporal solute spreading during solute movement. The number of experiments with multisampler devices that measure solute leaching as a function of space and time is increasing. The breakthrough curve (BTC) can characterize the temporal aspect of solute leaching, and recently the spatial solute distribution curve (SSDC) was introduced to describe the spatial solute distribution. We combined and extended both concepts to develop a tool for the comprehensive analysis of the full spatio-temporal behavior of solute leaching. The sampling locations are ranked in order of descending amount of total leaching (defined as the cumulative leaching from an individual compartment at the end of the experiment), thus collapsing both spatial axes of the sampling plane into one. The leaching process can then be described by a curved surface that is a function of the single spatial coordinate and time. This leaching surface is scaled to integrate to unity, and termed S can efficiently represent data from multisampler solute transport experiments or simulation results from multidimensional solute transport models. The mathematical relationships between the scaled leaching surface S, the BTC, and the SSDC are established. Any desired characteristic of the leaching process can be derived from S. The analysis was applied to a chloride leaching experiment on a lysimeter with 300 drainage compartments of 25 cm2 each. The sandy soil monolith in the lysimeter exhibited fingered flow in the water-repellent top layer. The observed S demonstrated the absence of a sharp separation between fingers and dry areas, owing to diverging flow in the wettable soil below the fingers. Times-to-peak, maximum solute fluxes, and total leaching varied more in high-leaching than in low-leaching compartments. This suggests a stochastic-convective transport process in the high-flow streamtubes, while convection dispersion is predominant in the low-flow areas. S can be viewed as a bivariate probability density function. Its marginal distributions are the BTC of all sampling locations combined, and the SSDC of cumulative solute leaching at the end of the experiment. The observed S cannot be represented by assuming complete independence between its marginal distributions, indicating that S contains information about the leaching process that cannot be derived from the combination of the BTC and the SSDC.
منابع مشابه
Functional test of pedotransfer functions to predict water flow and solute transport with the dual-permeability model MACRO
Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisations usually rely on a set of lookup tables and (pedo)transfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a comple...
متن کاملColumn leaching experiments on saline soils of different textures in Sistan plain
Salinization is the main characteristic of soils in arid and semi-arid regions which reduce the agricultural potential ofirrigated lands. Therefore, soil reclamation as well as determination of the leaching requirement for salt control is veryimportant for better plant growth. In this study, the effects of leaching on saline soils of Sistan region, southeast of Iranwere examined using unsaturat...
متن کاملA European test of pesticide-leaching models: methodology and major recommendations
Testing of pesticide-leaching models is important in view of their increasing use in pesticide registration procedures in the European Union. This paper presents the methodology and major conclusions of a test of pesticide-leaching models. Twelve models simulating the vertical onedimensional movement of water, solute, heat, and, in particular, pesticides, through the soil pro®le were used by 36...
متن کاملModeling and Spatio-Temporal Analysis of the Distribution of O3 in Tehran City Based on Neural Network and Spatial Analysis in GIS Environment
Air pollution is one of the most problems that people are facing today in metropolitan areas. Suspended particulates, carbon monoxide, sulfur dioxide, ozone and nitrogen dioxide are the five major pollutants of air that pose many problems to human health. The goal of this study is to propose a spatial approach for estimation and analyzing the spatial and temporal distribution of ozone based on ...
متن کاملAn assessment of the drainage quality and quantity associated with recycled wastewater irrigation in an urban park
Quantification of drainage to remove excess water from the soil profile and provide a suitable environment for vegetation has been developed over the years. Drainage estimation is fairly challenging particularly in the heterogeneous urban environs. This research studied the temporal variation of drainage rate and nutrient leaching in Veale Gardens of Adelaide Parklands, Australia. A zero tensio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of contaminant hydrology
دوره 54 3-4 شماره
صفحات -
تاریخ انتشار 2002